Identification of the cglC, cglD, cglE, and cglF genes and their role in cell contact-dependent gliding motility in Myxococcus xanthus.

نویسندگان

  • Darshankumar T Pathak
  • Daniel Wall
چکیده

Within Myxococcus xanthus biofilms, cells actively move and exchange their outer membrane (OM) lipoproteins and lipids. Between genetically distinct strains, OM exchange can regulate recipient cell behaviors, including gliding motility and development. Although many different proteins are thought to be exchanged, to date, only two endogenous OM lipoproteins, CglB and Tgl, are known to be transferred. Protein exchange requires the TraAB proteins in recipient and donor cells, where they are hypothesized to facilitate OM fusion for transfer. To better understand the types of proteins exchanged, we identified the genes for the remaining set of cgl gliding motility mutants. These mutants are unique because their motility defect can be transiently restored by physical contact with donor cells that encode the corresponding wild-type protein, a process called stimulation. Similar to CglB and Tgl, the cglC and cglD genes encode type II signal sequences, suggesting that they are also lipoproteins. Surprisingly, the cglE and cglF genes instead encode type I signal sequences, suggesting that nonlipoproteins are also exchanged. Consistent with this idea, the addition of exogenous synthetic CglF protein (71 amino acids) to a cglF mutant rescued its motility defect. In contrast to a live donor cell, stimulation with purified CglF protein occurred independently of TraA. These results also indicate that CglF may localize to the cell surface. The implications of our findings on OM exchange are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contact- and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Motility Machinery in Myxococcus xanthus

Bacteria engage in contact-dependent activities to coordinate cellular activities that aid their survival. Cells of Myxococcus xanthus move over surfaces by means of type IV pili and gliding motility. Upon direct contact, cells physically exchange outer membrane (OM) lipoproteins, and this transfer can rescue motility in mutants lacking lipoproteins required for motility. The mechanism of glidi...

متن کامل

Gliding motility in bacteria: insights from studies of Myxococcus xanthus.

Gliding motility is observed in a large variety of phylogenetically unrelated bacteria. Gliding provides a means for microbes to travel in environments with a low water content, such as might be found in biofilms, microbial mats, and soil. Gliding is defined as the movement of a cell on a surface in the direction of the long axis of the cell. Because this definition is operational and not mecha...

متن کامل

Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility.

Myxococcus xanthus social (S) gliding motility has been previously reported by us to require the chemotaxis homologues encoded by the dif genes. In addition, two cell surface structures, type IV pili and extracellular matrix fibrils, are also critical to M. xanthus S motility. We have demonstrated here that M. xanthus dif genes are required for the biogenesis of fibrils but not for that of type...

متن کامل

Gliding mutants of Myxococcus xanthus with high reversal frequencies and small displacements.

Myxococcus xanthus cells move on a solid surface by gliding motility. Several genes required for gliding motility have been identified, including those of the A- and S-motility systems as well as the mgl and frz genes. However, the cellular defects in gliding movement in many of these mutants were unknown. We conducted quantitative, high-resolution single-cell motility assays and found that mut...

متن کامل

Cyclic Di-GMP Regulates Type IV Pilus-Dependent Motility in Myxococcus xanthus

UNLABELLED The nucleotide-based second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is involved in regulating a plethora of processes in bacteria that are typically associated with lifestyle changes. Myxococcus xanthus undergoes major lifestyle changes in response to nutrient availability, with the formation of spreading colonies in the presence of nutrients and spore-filled fruiting bod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 194 8  شماره 

صفحات  -

تاریخ انتشار 2012